DIFFERENCE BETWEEN RELIABILITY TESTING AND DURABILITY TESTING

Dr. Hans J. Bajaria Multiface, Inc. 6721 Merriman Road Garden City, Michigan 48135 1956 USA

> Phone: (734) 421-6330 Fax: (734) 421-1142 email: <u>hbajaria@aol.com</u> URL: www.multiface.com

© Multiface, Inc. 2000

DIFFERENCE BETWEEN RELIABILITY TESTING AND DURABILITY TESTING

Hans Bajaria Multiface, Inc. Garden City, Michigan

INTRODUCTION

One definition of reliability is "the measure of *unanticipated interruptions* during customer use." The unanticipated interruptions typically arise from unexpected failures. During a reliability test, one important goal is to maximize the opportunities for observing unexpected failures, so that they can be fixed. The fewer the opportunities we have to observe unpredictable failures, the greater the chance that we are not testing to measure reliability. A test may appear to be a reliability test and actually be a durability type test when opportunities for discovering unscheduled interruptions are minimized unintentionally.

How can we minimize the probability of discovering unexpected interruptions?

RELIABILITY AND DURABILITY

Let us first discuss the difference between reliability and durability. One measure of durability is represented by the duration of product ownership. Reliability, on the other hand, represents interruptions in usage during that ownership. The ownership of any product or system cannot be enjoyed if it is continually interrupted and the desired functions lost for even a brief time. This means reliability takes precedence over durability even though both are desired in most applications.

To assess reliability or durability we rely on internal qualification tests, because it is not possible to calculate either reliability or durability from basic principles alone. Even if we can generate mathematical models to estimate reliability or durability, the models still need to be verified by testing.

This brings us to a discussion about the differences between reliability testing and durability testing. A durability test is a subset of a reliability test. We may be able to estimate durability from a reliability test but we cannot estimate reliability from a durability test. Additionally, both these tests appear very similar from the testing mechanics' viewpoint, it is often difficult to discern any differences. So how can we make a clear distinction between a reliability test and a durability test?

RELIABILITY TESTING AND ACTUAL INDUSTRY PRACTICE

Earlier we defined reliability as a measure of unexpected interruptions. Therefore, a reliability test must maximize the opportunity to observe unexpected interruptions typical of customer experience. In Table 1, we examine the differences between what reliability testing practices should be versus actual industry testing practices. Furthermore, we identify the best practices.

Considering all the differences that potentially exist between actual industry testing practices and what should be as described in Table 1, a formal definition of reliability testing can be stated as follows.

RELIABILITY TESTING - DEFINED

The testing of a product in the end-user environment and in the end-user hands -- on a randomly selected production sample constitutes a major part of a well-designed reliability test. It is a test in which the chances for catching unexpected interruptions are maximized. Any departure from the reliability test definition most likely estimates durability and not reliability. Figure 1 describes the subtle differences between durability testing paths and reliability testing paths.

Reliability test should be	Actual industry practice	Best practice
Reliability test should reflect a true	In most instances, industry uses	Use actual users and actual
customer. Actual likely users in an	expert or well-trained employees to	environments for tests whenever
actual environment should be testing	simulate customers' feedback.	possible.
products.	Well-trained employees are not a	
	true reflection of potential	
	customers. Employees have vested	
	interest and therefore, one cannot	
	consider the data as 100% valid.	
If testing must be done in a	Many tests are conducted in a	If only laboratory tests are possible,
laboratory, a reliability test should	laboratory under a simulated, single	measure customer environments and
reflect a true user environment.	environment. The outcome of such	design tests accordingly, so that all
	tests most likely represents	environments and the operating
	durability rather than reliability.	profile are included simultaneously.
The reliability test should reflect a	In many instances, prototype parts	Define reliability at two levels: 1)
sample coming from a true	are used for the test. Prototype parts	hardware level D (design level) and
production environment.	may exhibit the validity of physical	2) hardware level P (production
-	principles but may not necessarily	level). Design engineering is
	reflect reliability.	considered complete only when both
		the D level and P level are proven.
Reliability tests should use random	Industry practice is to use pre-	Use random samples. Or, if pre-
samples.	qualified test samples. That means,	qualified samples have to be used,
	the test samples are inspected and	make the pre-qualification scheme a
	assured to be within specifications	part of the production control plan.
	before they are subjected to the tests.	
	This, in turn, reduces the chances of	
	observing premature failures. Pre-	
	qualified samples most likely	
	measure durability not reliability.	
The reliability test should be a	Most tests are designed to verify	Perform verification tests on a
validation test, not just a verification	design requirements. These	smaller sample. Perform validation
test.	requirements are supposedly a	tests on a larger sample.
	translation of customer	
	requirements. Such tests can be	
	labeled as verification tests. The	
	outcome of such tests most likely	
	measures durability rather than	
	reliability. Additionally, the tests do	
	not reflect the fact that some	
	customer environments may be	
	inadequately translated or some	
	customer environments may be	
	omitted altogether.	

Table 1 – Reliability Testing Practices

EPILOGUE

Some industries are still riddled with substantial warranty expenses. Typically elements of unrecognized user environments and processing problems that escape the quality system make up a major portion of the causes of these warranty expenses. Companies sometimes still do not understand why warranty costs are high in spite of successful product releases. Engineering or management may feel satisfied when tests pass the prescribed criteria yet the test plan does not reflect the full customer environment or the full range of manufacturing variability. In such cases, we can say that quality-planning efforts are "focused on verification, not on validation."

I believe that understanding the difference between reliability testing and durability testing is a key to reducing design/development expenses as well as warranty expenses by an order of magnitude. Specifically, these benefits are based on the following facts:

- 1) Reliability tests are shorter than durability tests by a considerable amount of time. The best practices described in Table 1 will discover failures sooner.
- 2) Validation planning efforts are usually much more meaningful than verification planning efforts resulting in a net benefit.
- 3) Reliability tests often discover problems before they are discovered in the field.

Are you conducting durability tests or reliability tests at your company?

Figure 1 – Difference between Reliability Testing and Durability Testing